Operating Systems
Lecture 10

lock and conditional variable design

Prof. Mengwel Xu

Recap: Scheduling

* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it executes; cycle between all
ready threads

- Pros: Better for short jobs

* Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):

- Run whatever job has the least amount of computation to do/least remaining amount
of computation to do

- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

11/8/24 Mengwei Xu @ BUPT 2

Recap: Scheduling

* Lottery Scheduling:

- Give each thread a priority-dependent number of tokens (short tasks = more
tokens)

* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms

- Automatic promotion/demotion of process priority in order to approximate
S|F/SRTF

* Real-time scheduling

- Need to meet a deadline, predictability essential
- Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

11/8/24 Mengwei Xu @ BUPT 3

11/8/24

Numbering from zero

Why numbering should shart o} zero EWD831.html

To denote the subsequence o? naklural numbers
2,3,...,42 without the pernicious Yhree doks, {faur
conven%ons are open Yo us:

a) 2 ¢ <13
k) 1< ¢ 12
<) 25 ¢ £ A2
d) 1< <13

Qre there reasons to Fne?er‘ one convenlion Yo
he other? Yes, there are. The cbservation that
conventions o) ond b) have the advanisge Fnok
e diference helween the bounds as men\aonec\
eq;ux\s Yhe lene}\r o? +he Su\asec\uence 18 valid.
So is the observation thal,os o cemsequence,
in ether convenlion 4two su\ssequehces are qd-
\‘Bacen’r means that the wpper bound o.? Yhe one
Qqua\s 'Hwe \omer Yoound o? -H-:e o%wer. Va\id as

Yhese observalions are, ¥ dan't enokle us Yo
choose Yedween o) and b)) 3 so le} us shask
a?res\a,

There s o smallest nalural number. Exclusion
o? the lower bound -as in k) and d)- Forces
?c,r o Su\osequence skr}-ing o} Yhe smalles}t natural
V\um\aer ‘\ﬁle \ower bound as men\-'scrneé ‘\n\o }he
reo\m o‘? Yhe u»rmcﬁurQ\ nawbers. That s U‘Slf)’
so r Yhe lower bound we preler g as n
&) and <). Consider now the subsequences
shartina oF the swmallest nalural number: in-
clusion o? Yhe wpper bound would Yhen -?orce
Yhe \otker Yo he unnatura by the Yime Yhe se-
quence has shrunk do the emyb one. That is
u3\3, So €or the wpper bound we pre?er < as

Mengwei Xu @ BUPT

in a) and d) . We conclude thal comvenlion o)
is Yo ke)are{)errea..

M “The programming \““3““3° Mesa. , devel-
oped at Xerox PARC, has s?ecia\ nobations g—?:.r
intervals o? \n}esers m all Fouu" conven Yions. Ex-
Yensive experience with Mesa has shown Yha} the
use o? Yre other Yhree cumvenkions has hbeen o
constant source of clumsiness ond wmishokes,
and on account o? Yhat experience Mesa pro-
grammers are Now s\-runak advised nol Yo e
the laNer three available Ceoures. 1 wention this
exPerimenxa\ evidence —for what i} s worbh~
hecause some peo \e ()ee uncomforiolle with con-
clusions Yhat have not been conltirmed in proc-

Yice. (End 0??ew~ar\m>

*

When dealing with a sequence of lengih W |
Fhe e\emen‘s o w\'\ic\n we wiS\w t}o o\issﬁngu.is\'\
by subscriph, +he next vexing guesYion s what
subscript value 4o assign Jo~i}s starhng cle-
ment. Bdhering +o <onvenkon a) :j\e\ds,wken
5‘«~qr¥in© with su\;scri)o} 4, Yhe subscrip} ranoe
1< (< N+ starhin with O, however, oives Yhe
nicer ronoe O05¢<N . So lebus le} our or-
dinals sharF a} zero @ an element's ordinal (sub-
ScriF}3 equals the number oP elemenls)chea.m&
} m dhe sequence. fAnd the moral o e sbw
is tha} we had beber regqard —q%er all Hhose

Cen}ur‘»es\.— 2ero as o mos} noa ura\ v\um\oer‘

es have \Deeﬂ

(Pevnark_ Man o qrammin \onou o
designeci w"“n:jouf we a-\)re‘?ﬁiona‘o ?—‘ns detail. 1n

FORTRAN, su\oscriy\s a\mﬁs start at A 5 in QL-

»*

OS Conceptual Framework

Process | Process N
threads threads * Physical addresses shared
& &S y 23 MO y So: Processes and Address
o il Translation
0 0
state | | - .- state e CPU must be Shared
CPU CPU CPU CPU i SO: Threads
* Processes aren’t trusted
* So: Kernel/Userspace Split
CPU OS
el * Threads might not cooperate
| thread * So: Use timer interrupts to
| o 2 time context switch ("preemption”)

(I core)

Goals for Today

* Motivating synchronization: why it's difficult
* Locks
* Condition variables

* Semaphores

11/8/24 Mengwei Xu @ BUPT 6

Recall: Thread Abstraction

Programmer Abstraction Physical Reality
r- TSI T T st
Threade,S,S,S,S. ISISIS 5 S
g 12 131 41 5| S T I T B
| | | | | | | | |
Processors')mi:)”ﬁ:)”ﬁ:)”ﬁ:)”ﬁ' ')m:)mﬁ'
12,3, 405 | L2,
Running Ready
Threads Threads

* Infinite number of processors

* Threads execute with variable speed
* Programs must be designed to work with any schedule

11/8/24 Mengwei Xu @ BUPT 7

Multiprocessing vs Multiprogramming

e Remember Definitions:

- Multiprocessing = Multiple CPUs or cores or hyperthreads (HWV per-instruction
interleaving)

- Multiprogramming = Multiple Jobs or Processes
- Multrithreading = Multiple threads per Process
* What does it mean to run two threads “concurrently’”?
- Scheduler is free to run threads in any order and interleaving: FIFO, Random, ...

A
Multiprocessing B
C
A B C
q
Multiprogramming A B C A B C B
e N B By B |

11/8/24 Mengwei Xu @ BUPT 8

Why Allow Cooperating Threads?

* Advantage |:Share resources
- One computer, many users

- One bank balance, many ATMs
O What if ATMs were only updated at night?

- Embedded systems (robot control: coordinate arm & hand)

* Advantage 2: Speedup

- Overlap /O and computation
 Many different file systems do read-ahead

- Multiprocessors — chop up program into parallel pieces
* Advantage 3: Modularity

- More important than you might think

- Chop large problem up into simpler pieces
O To compile, for instance, gcc calls cpp | ccl | cc2 | as | 1d
L Makes system easier to extend

11/8/24 Mengwei Xu @ BUPT 9

Correctness for Systems with Concurrency

* If dispatcher can schedule threads in any way, programs must work under all
clrcumstances

- Can you test for this?
- How can you know If your program works?

* Independent Threads:
- No state shared with other threads
- Deterministic = Input state determines results
- Reproducible = Can recreate Starting Conditions, I/O
- Scheduling order doesn't matter (if switch() works!ll)

* Cooperating Threads:
- Shared State between multiple threads
- Non-deterministic
- Non-reproducible

* Non-deterministic and Non-reproducible means that bugs can be
intermittent

- Sometimes called “Heisenbugs”

11/8/24 Mengwei Xu @ BUPT 10

Interactions Complicate Debugging

* |s any program truly independent?
- Every process shares the file system, OS resources, network, etc.

- Extreme example: buggy device driver causes thread A to crash “independent
thread” B

* Non-deterministic errors are really difficult to find

- Example: Memory layout of kernel+user programs
U Depends on scheduling, which depends on timer/other things
 Original UNIX had a bunch of non-deterministic errors

11/8/24 Mengwei Xu @ BUPT I

Problem is at the Lowest Level

* Most of the time, threads are working on separate data, so scheduling doesn't

matter:
Thread A Thread B
X = |: y =2
* However, what about (Initially, x = 12):
Thread A Thread B
X = |: X = 2

- X could be | or 2 (non-deterministic!)

- Could even be 3 for serial processors:
U Thread A writes 0001, B writes 0010 — scheduling order ABABABBA yields 3!

11/8/24 Mengwei Xu @ BUPT 12

Problem is at the Lowest Level

* A more complex case (Inttially, x = 0):

Thread A Thread B
x = x +1; X =x+ 2
load rl, x load rl, x
add r2,rl, | add r2,rl, 2
store X, r2 store X, r2

* What are the possible outputs?

11/8/24 Mengwei Xu @ BUPT 13

11/8/24

Problem is at the Lowest Level

* A more complex case (Inttially, x = 0):

Thread B
X =X+ 2

Thread A

X =x*t1:
load rl, x

add r2,rl, |

store X, r2

load rl, x

add r2,rl, 2

store X, r2

Final: x = 3

load rl, x
load rl, x
add r2,rl, |
add r2,rl, 2
store X, 2

store X, r2

Final: x = 2

Mengwei Xu @ BUPT

load rl, x
add r2,rl, |
load rl, x
add r2,rl, 2
store X, 2

store X, r2

Final: x = |

What’s Worse: Reordered Instructions by Compiler

* Compilers could reorder the instructions to maximize the instruction level
parallelism.

- Yet, it only ensures the dependency correctness within a thread, not across threads.
- plnttialized could be set to true before funcA().

Thread A Thread B
D = funcA(); y = 2;
plnrtialized = true; while(Iplnrtialized); // wart
q = funcB(p)

11/8/24 Mengwei Xu @ BUPT I5

Atomic Operations

* Jo understand a concurrent program, we need to know what the underlying
indivisible operations are!

» Atomic Operation (J&F#£1E): an operation that always runs to completion
or not at all

- It s indivisible: it cannot be stopped in the middle and state cannot be modified by
someone else in the middle

- Fundamental building block — if no atomic operations, then have no way for threads to
work together

* On most machines, memory references and assignments (i.e. loads and stores)
of words are atomic

- Consequently — weird example that produces 3" on previous slide can't happen

* Many Instructions are not atomic

- Double-precision floating point store often not atomic
- VAX and IBM 360 had an instruction to copy a whole array

11/8/24 Mengwei Xu @ BUPT 16

Motivation: “Too Much Milk”

* Great thing about OS’s — analogy between problems in OS and
problems In real life

- Help you understand real life problems better

- But, computers are much stupider than people

* Example: People need to coordinate:
Time Person A Person B
3:00 Look in Fridge. Out of milk
3:05 Leave for store
3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store
3:20 Arrive home, put milk away Arrive at store
3:25 Buy milk
3:30 Arrive home, put milk away

11/8/24 Mengwei Xu @ BUPT 17

Definitions

* Synchronization ([]Z7): using atomic operations to ensure cooperation
between threads
- For now, only loads and stores are atomic

- We are going to show that its hard to build anything useful with only reads and
writes

« Mutual Exclusion (B J%): ensuring that only one thread does a particular
thing at a time

- One thread excludes the other while doing its task

* Critical Section (1
execute at once.

- Critical section is the result of mutual exclusion
- Critical section and mutual exclusion are two ways of describing the same thing

7 [X): piece of code that only one thread can

11/8/24 Mengwei Xu @ BUPT 18

Definitions

* Lock: prevents someone from doing something
- Lock before entering critical section and before accessing shared data

- Unlock when leaving, after accessing shared data
- Wait if locked

Wimportant idea: all synchronization involves waiting
* For example: fix the milk problem by putting a key on the refrigerator

- Lock it and take key If you are going to go buy milk
- Fixes too much: roommate angry if only wants orange

417
#$@°
@$@/o@#$

- Of Course —We don't know how to make a lock yet

11/8/24 Mengwei Xu @ BUPT 19

Too Much Milk: Correctness Properties

* Need to be careful about correctness of concurrent programs, since
non-deterministic
- Impulse Is to start coding first, then when it doesnt work, pull hair out
- Instead, think first, then code
- Always write down behavior first

* What are the correctness properties for the “Too much milk’ problem???
- Never more than one person buys
- Someone buys If needed

* Restrict ourselves to use only atomic load and store operations as
building blocks

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:

- Leave a note before buying (kind of “lock™)
- Remove note after buying (kind of “unlock’™)
- Don't buy if note (wait)

* Suppose a computer tries this (remember, only memory read/write are
atomic):
if (noMilk) A
1f inoNote)
eave Note;

y milk;
remove note,

11/8/24 Mengwei Xu @ BUPT 21

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock™)
- Remove note after buying (kind of “unlock™)
- Don't buy If note (wairt)
* Suppose a computer tries this (remember, only memory read/write are

atomic):
Thread A Thread B
1 (noMilk) o if (noMilk) {
1f (noNote) {
if (noNote) {
leave Note;
buy Milk;
remove Note;
}
}

leave Note;
buy Milk;
remove Note;

11/8/24 Mengwei Xu @ BUPT 22

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock™)
- Remove note after buying (kind of “unlock™)
- Don't buy If note (wairt)
* Suppose a computer tries this (remember, only memory read/write are

atomic):
if (noMilk) {
1f inoNote
eave Note,
remove note,
}
e Result?

- Still too much milk but only occasionally!
- Thread can get context switched after checking milk and note but before buying milk!
* Solution makes problem worse since fails intermittently

- Makes it really hard to debug...
- Must work despite what the dispatcher does!

11/8/24 Mengwei Xu @ BUPT 23

Too Much Milk: Solution #1'2

* Clearly the Note Is not qurte blocking enough
- Let’s try to fix this by placing note first

* Another try at previous solution:

leave Note;

if (noMilk) {
if (noNote) {
} buy milk;

¥

remove Note;

* What happens here!
- Well, with human, probably nothing bad
- With computer: no one ever buys milk

11/8/24 Mengwei Xu @ BUPT 24

Too Much Milk Solution #2

* How about labeled notes!?
- Now we can leave note before checking

* Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote Bz if noNoteAi
1f (noMil & { if (noMi k& {
buy Mil buy Mil
}) }
remove note A; remove note B;

e Does this work?

11/8/24 Mengwei Xu @ BUPT 25

Too Much Milk Solution #2

* How about labeled notes!?
- Now we can leave note before checking

* Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote Bz if noNoteAi
1f (noMil & { if (noMi k& {
buy Mil buy Mil
}) }
remove note A; remove note B;

e Does this work?

* Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead each to think that the other is
going to buy

* Really insidious:

- Extremely unlikely this would happen, but will at worse possible time
- Probably something like this in UNIX

11/8/24 Mengwei Xu @ BUPT 26

Too Much Milk Solution #3

* Here Is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote Aa {A\Y
do nothing; if (noMil & {
} buy milk;
1f (noMilk& { }
buy milk;

remove note B;
remove note A;

e Does this work?

11/8/24 Mengwei Xu @ BUPT 27

Too Much Milk Solution #3

* Here Is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) { \\X if (noNote Aa { \\Y
do nothing; if (noMil & {
buy milk;

if (noMilk& {
buy milk;
remove note B;
remove note A;

* Does this work? Yes. Both can guarantee that:
- It Is safe to buy, or
- Other will buy, ok to quit
* At X:
- If no note B, safe for A to buy,
- Otherwise walt to find out what will happen

e AtY:

- If no note A, safe for B to buy
- Otherwise, A Is erther buying or waiting for B to quit

11/8/24 Mengwei Xu @ BUPT

28

Case |

« “leave note A" happens before“if (noNote A)”

[Ieave note A; happeneqy leave note B;

while (note B) {\\ §§7££;g-§, if (noNote A) {\\Y
do nothing; if (noMilk) {

}; buy milk;

}
¥

remove note B;

if (noMilk) {

buy milk;}
}

remove note A;

11/8/24 Mengwei Xu @ BUPT 29

Case |

« “leave note A" happens before“if (noNote A)”

[Ieave note A; happeneqy leave note B;

while (note B) {\\ §§7££;g-§, if (noNote A) {\\Y
do nothing; if (noMilk) {

}; buy milk;

}
¥

remove note B;

if (noMilk) {

buy milk;}
}

remove note A;

11/8/24 Mengwei Xu @ BUPT 30

Case |

« “leave note A" happens before“if (noNote A)”

[Ieave note A; happeneqy leave note B;
while (note B) {\\ §§7££;;-~, if (noNote A) {\\Y

do nothing; if (noMilk) {
}; buy milk;
' Wait for)
| hote B to }

lberewmwe remove note B;

—-—
—
—
-
—
—

if (noMilk) {

buy milk; }
}

remove note A;

11/8/24 Mengwei Xu @ BUPT 31

11/8/24

Case 2

« “if (noNote A)" happens before “leave note A"

leave note B;

if (noNote A) {\\Y

‘(\a\DPened
pefo®

_leave note A;

while (note B) {\\X

do nothing;
}s5

if (noMilk) {

buy milk;}
}

remove note A;

Mengwei Xu @ BUPT

if (noMilk) {
buy milk;

}
}

remove note B;

32

11/8/24

Case 2

« “if (noNote A)" happens before “leave note A"

leave note B;

if (noNote A) {\\Y

‘(\a\DPened
pefo®

_leave note A;

while (note B) {\\X

do nothing;

}s

if (noMilk) {

buy milk;}
}

remove note A;

Mengwei Xu @ BUPT

if (noMilk) {
buy milk;

}
}

remove note B;

33

Case 2

« “if (noNote A)" happens before “leave note A"

leave note B;

h&ﬁﬁngj if (noNote A) {\\Y
,,/ggzéf"' if (noMilk) {

_leave note A;

while (note B) {\\X buy milk;
: }
do nothing; }
}s | remove note B;
F'\Wait for _-
I'note B to _-
! be remove -

if (noMilk) {

buy milk;}
}

remove note A;

11/8/24 Mengwei Xu @ BUPT 34

Solution #3 Discussion

* Our solution protects a single “Crrtical-Section™ piece of code for each
thread:

1f (noMilk) {
buy milk;
}

* Solution #3 works, but it's really unsatisfactory

- Really complex — even for this simple example
1 Hard to convince yourself that this really works

- A’s code is different from B's — what if lots of threads?
L Code would have to be slightly different for each thread

- While A Is waiting, it is consuming CPU time
U This is called “busy-waiting”
* There's a better way
- Have hardware provide higher-level primitives than atomic load & store
- Build even higher-level programming abstractions on this hardware support

11/8/24 Mengwei Xu @ BUPT 35

Too Much Milk: Solution #4

* Suppose we have some sort of implementation of a lock
- lock.Acquire() — wait until lock is free, then grab
- lock.Release() — Unlock, waking up anyone waiting

- These must be atomic operations — if two threads are waiting for the lock and
both see It's free, only one succeeds to grab the lock

* Then, our milk problem Is easy:

milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

* Once again, section of code between Acquire() and Release()
called a "Critical Section”

11/8/24 Mengwei Xu @ BUPT 36

Where are we going with synchronization?

* We are going to implement various higher-level
synchronization primitives using atomic operations

* Everything is pretty painful if only atomic primitives are load
and store

* Need to provide primitives useful at user-level

11/8/24 Mengwei Xu @ BUPT 37

Lock

* Suppose we have some sort of implementation of a lock
- lock.Acquire() — wait until lock is free, then grab
- lock.Release() — Unlock, waking up anyone waiting

- These must be atomic operations — if two threads are waiting for the lock and
both see It's free, only one succeeds to grab the lock

* 3 formal properties
- Mutual exclusion: at most one thread holds the lock

- Progress: If no thread holds the lock and any thread attempts to acquire the lock,
then eventually some thread succeeds in acquiring the lock

- Bounded waiting: if thread T attempts to acquire a lock, then there exists a
bound on the number of times other threads can successfully acquire the lock
before T does

[Yet, it does not promise that waiting threads acquire the lock in FIFO order.

11/8/24 Mengwei Xu @ BUPT 38

11/8/24

What does a Lock Guarantee?

* A simple case of lock.
- Assuming x Is shared among threads
- Other threads only access x with lock

Mengwei Xu @ BUPT

int x = 0;

/[T1l:can we ensure x = 0 here?
lock.acquire();

/[T2: can we ensure x = 0 here?
X = |;

/[T3:can we ensure x = | here?
lock.release();

/[T4: can we ensure x = | here?
X = 2;

// T5: can we ensure x = 2 here!?

39

What does a Lock Guarantee?

* A simple case of lock.

- Assuming x Is shared among threads
- Other threads only access x with lock /I'T]: can we ensure x

lock.acquire();

int x = 0;

0 here!?

/[l T2: can we ensure x = 0 here!?

X = |;
’fa lock is not hE’d, nOthiﬂg // T3:can we ensure x = | here!
can be guaranteed! lock.release();
// T4: can we ensure x = | here!
X = 2;

// T5: can we ensure x = 2 here!?

11/8/24 Mengwei Xu @ BUPT 40

Condition Variable

 Condition Variable (55448 &): a queue of threads waiting for
something inside a critical section

- Key idea: allow sleeping inside critical section by atomically releasing lock at time
we go 1o sleep

* Operations:

- Wait(&lock):Atomically release lock and go to sleep. Re-acquire lock later,
before returning.

- Signal():Wake up one waiter, if any
- Broadcast():Wake up all waiters
- Differentiate them from UNIX wait and signal

11/8/24 Mengwei Xu @ BUPT 41

Condition Variable Example

 Condition Variable (55448 &): a queue of threads waiting for
something inside a critical section

- Key idea: allow sleeping inside critical section by atomically releasing lock at time
we go 1o sleep

* A common pattern:

FuncA._wait() { FuncB_signal() {

lock.acquire();
lock.acquire(); quire()

/| read/write shared state here
/| read/write shared state here

while (testOnSharedState())
cv.wait(&lock);
assert(testOnSharedState());

lock.release();

/I If state has changed that allows
another thread to make progress, call
signal or broadcast

cv.signal();

lock.release();

11/8/24 Mengwei Xu @ BUPT 42

Condition Variable Example

* A concrete example of bounded queue implementation (or producer-

consumer, 22 P2 B TH P)

void bounded_queue:insert(int item) {

class bounded queue { lock.acquire();
Lock lock; while (queue full()) {
CV itemAdded: itemRemoved.wait(&lock);
CV itemRemoved; }
o o add_item(item);
void insert(int item); itemAdded.signal();
int remove(); lock.release();

; }

How to implement remove()?

Condition Variable Example

* A concrete example of bounded queue implementation (or producer-

consumer, 22 P2 B TH P)

void bounded_queue:insert(int item) {

* Two key principles lock.acquire();
- CV is always used with lock acquired while (queue full()) {

_ i | | ?
CVis put in a while loop. Why: itemRemoved.wait(&lock);

}

add_item(item);
itemAdded.signal();

lock.release();

Semaphores

* Semaphores ({5 &) are a kind of generalized lock
- First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX

* Definition: a Semaphore has a non-negative integer value and supports
the following two operations:
- P():an atomic operation that waits for semaphore to become positive, then
decrements 1t by |
A Think of this as the wait() operation
- V(): an atomic operation that increments the semaphore by |, waking up a
waiting B if any
W This of this as the signal() operation

- Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to
increment) in Dutch

11/8/24 Mengwei Xu @ BUPT 45

Semaphores vs. Integers

* Semaphores are like integers, except

- No negative values
- Only operations allowed are P andV — can't read or write value, except to set it
inrtially
- Operations must be atomic
O Two P’s together cant decrement value below zero

Q Similarly, thread going to sleep in P won't miss wakeup fromV — even if they both happen
at same time

* Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

o

Two Uses of Semaphores

|. Mutual Exclusion (initial value = I)
* Also called “Binary Semaphore’.

e Can be used for mutual exclusion:

semaphore.P () ;
// Critical section goes here
semaphore.V () ;

2. Scheduling Constraints (initial value = 0)

* Allow thread | to walt for a signal from thread 2, i.e., thread 2 schedules
thread | when a given event occurs

* Example: suppose you had to implement Thread|oin which must wait for
thread to terminate:
Initial value of semaphore = 0
ThreadJoin {

semaphore.P () ;
}
ThreadFinish {
semaphore.V () ;
}

11/8/24 Mengwei Xu @ BUPT 47

Producer-Consumer with a Bounded Buffer

e Problem Definition Prod -
- Producer puts things into a shared buffer refaltiesr onsumer

- Consumer takes them out
- Need synchronization to coordinate producer/consumer

* Don’t want producer and consumer to have to work in lockstep, so put a
fixed-size buffer between them

- Need to synchronize access to this buffer
- Producer needs to walrt if buffer is full
- Consumer needs to walt if buffer is empty

* Example |: GCC compliler
-cpp | ccl | cc2 | as | 1d

* Example 2: Coke machine
- Producer can put limited number of Cokes in machine
- Consumer can't take Cokes out if machine is empty

11/8/24 Mengwei Xu @ BUPT 48

Correctness constraints for solution

e Correctness Constraints:

- Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

- Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

- Only one thread can manipulate buffer queue at a time (mutual exclusion)

* Remember why we need mutual exclusion
- Because computers are stupid
- Imagine if in real life: the delivery person is filling the machine and somebody
comes up and tries to stick their money into the machine

* General rule of thumb: |
Use a separate semaphore for each constraint

- Semaphore fullSlots; // consumer’s constraint
- Semaphore emptySlots;// producer’s constraint
- Semaphore mutex; // mutual exclusion

11/8/24 Mengwei Xu @ BUPT 49

Full Solution to Bounded Buffer

Semaphore fullSlots = ?;
Semaphore emptySlots = ?;

Semaphore mutex = 1; // No one using machine

Producer (item) {
emptySlots.P();
mutex.P () ;
Enqueue (1tem) ;
mutex.V () ;
fullSlots.V{();

Wait until space
Walit until machine free

~
~

Tell consumers there 1is
more coke

~
~

}

Consumer () {

fullSlots.P(); // Check if there’s a coke
mutex.P () ; // Wait until machine free
item = Dequeue () ;

mutex.V () ;

emptySlots.V () ; // tell producer need more

return item;

11/8/24 Mengwei Xu @ BUPT 50

Full Solution to Bounded Buffer

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer (item) {
emptySlots.P();
mutex.P () ;
Enqueue (1tem) ;
mutex.V () ;
fullSlots.V{();

Wait until space
Walit until machine free

~
~

Tell consumers there 1is
more coke

~
~

}

Consumer () {

fullSlots.P(); // Check if there’s a coke
mutex.P () ; // Wait until machine free
item = Dequeue () ;

mutex.V () ;

emptySlots.V () ; // tell producer need more

return item;

11/8/24 Mengwei Xu @ BUPT 51

Discussion about Solution

Decrease # of

Why asymmetry? empty slots
N
* Producer does: emptySlots.P () | e
Nncrease O
fullSlots.V()— - occupied slots
e Consumer does: fullSlots.P (),
emptySlots.V () A

Decrease # of
occupled slots

Increase # of
empty slots

11/8/24 Mengwei Xu @ BUPT 52

Discussion about Solution

s order of P's important! Producer (item) ({
mutex.P () ;

emptySlots.P() ;

) ! E - t ;
s order of V's important? mﬁ‘g‘;i‘f“jf)l;em)

fullSlots.V () ;
}

Consumer () {
fullSlots.P () ;

What if we have 2 producers or 2 mutex.P () :
consumers? item = Dequeue () ;
mutex.V () ;

emptySlots.V() ;
return item;

11/8/24 Mengwei Xu @ BUPT 53

11/8/24

Discussion about Solution

s order of P's important! Producer (item) ({
mutex.P() ;
* Yes! Can cause deadlock emptySléi:S.P() .
) Enqueue (item) ;
s order of V's important? mu%:x.vf) ,.)

fullSlots.V() ;

* No, except that it might affect }

scheduling efficiency Consumer () |
. fullSlots.P() ;
What if we have 2 producers or 2 muten.B() 0
consumers? item = Dequeue () ;
. mutex.V () ;
* Do we need to change anything? emptySlots.V() ;

return item;

Mengwei Xu @ BUPT

54

Some Advices

* Always acquire the lock at the beginning of a method and release it
right before the return

- Consistent behavior makes it easier to program
- Also makes It easier to read and debug

11/8/24 Mengwei Xu @ BUPT 55

Some Advices

* Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes It easier to read and debug

* A case: double-checked locking

Singleton* Singleton::instance() {
if (pInstance == NULL) {

plnstance = new Instance();

}

return plnstance;

}

An unsafe solution

11/8/24

Singleton* Singleton::instance() {
lock.acquire();
if (pInstance == NULL) {

plnstance = new Instance();

}

lock.release();

return plnstance;

}

Singleton* Singleton::instance() {
if (pInstance == NULL) {
lock.acquire();
if (pInstance == NULL) {
plnstance = new Instance();

}

lock.release();

}

return plnstance;

}

A safe solution

Mengwei Xu @ BUPT

An " “optimized” solution.

Is it safe?

56

11/8/24

Common Concurrency Problems

Application = What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice = Office Suite 6 2
Total 74 31

Figure 32.1: Bugs In Modern Applications

[1] “Learning from mistakes: a comprehensive study on real world concurrency bug
characteristics”, Shan Lu, et al. ASPLOS’08

Mengwei Xu @ BUPT

57

Common Concurrency Problems

o . . 1 Thread 1::
* Atomicity-Violation Bugs » if (thd->proc_info) {
3 fputs (thd->proc_info, ...);
4}
8
6 Thread 2::
74

thd->proc_info = NULL;

11/8/24 Mengwei Xu @ BUPT 58

Common Concurrency Problems

Thread 1::
if (thd->proc_info) {
fputs (thd->proc_info, ...);

—

* Atomicrty-Violation Bugs

Thread 2::

2
3
4
5
6
7 thd->proc_info = NULL;

pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_ INITIALIZER;

Thread 1::
pthread_mutex_lock (&proc_info_1lock);
if (thd->proc_info) {
fputs (thd->proc_info, ...);
}

pthread_mutex_unlock (&proc_info_lock);

O 00 NN N G e W =

Thread 2::

pthread_mutex_lock (&proc_info_1lock);
thd->proc_info = NULL;
pthread_mutex_unlock (&proc_info_1lock);

=
N = O

—
w

11/8/24 Mengwei Xu @ BUPT 59

Common Concurrency Problems

* Order-Violation Bugs

1 Thread 1::

2 void init () {

3 mThread = PR_CreateThread (mMain, ...);
s}

5

6 Thread 2::

7 void mMain(...) {

8 mState = mThread->State;

9

}

11/8/24 Mengwei Xu @ BUPT 60

Common Concurrency Problems

* Order-Violation Bugs

Thread 1::
void init () {

mThread = PR_CreateThread (mMain,
}

Thread 2::
void mMain(...) {
mState = mThread->State;

O 0 N N U s W N =

}

11/8/24

O 0 NN N Ul s W N =

N S N
AN U s W N = O

17

pthread_mutex_t mtLock =

PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER;
int mtInit = 0;
Thread 1::
void init () {
mThread = PR_CreateThread (mMain, ...);

// signal that the thread has been created...
pthread_mutex_lock (&mtLock) ;

mtInit = 1;

pthread_cond_signal (&mtCond) ;
pthread_mutex_unlock (&mtLock) ;

}

Thread 2::
void mMain(...) {

// wait for the thread to be initialized...
pthread_mutex_lock (&mtLock) ;
while (mtInit == 0)

pthread_cond_wait (&mtCond, &mtLock);
pthread_mutex_unlock (&mtLock) ;

mState = mThread->State;

}

Mengwei Xu @ BUPT

6l

