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• Round-Robin Scheduling: 
- Give each thread a small amount of CPU time when it executes; cycle between all 

ready threads
- Pros: Better for short jobs 

• Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):
- Run whatever job has the least amount of computation to do/least remaining amount 

of computation to do
- Pros: Optimal (average response time) 
- Cons: Hard to predict future, Unfair

Recap: Scheduling
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• Lottery Scheduling:
- Give each thread a priority-dependent number of tokens (short tasks Þ more 

tokens)

• Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms
- Automatic promotion/demotion of process priority in order to approximate 

SJF/SRTF

• Real-time scheduling
- Need to meet a deadline, predictability essential
- Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

Recap: Scheduling
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Numbering from zero
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OS Conceptual Framework
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• Physical addresses shared
• So: Processes and Address 

Translation

• CPU must be Shared
• So: Threads

• Processes aren’t trusted
• So: Kernel/Userspace Split

• Threads might not cooperate
• So: Use timer interrupts to 

context switch (”preemption”)
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• Motivating synchronization: why it’s difficult
• Locks
• Condition variables
• Semaphores

Goals for Today
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Recall: Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed
• Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running 
Threads

Ready 
Threads

1       2          3        4        5 1       2         3        4        5
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• Remember Definitions:
- Multiprocessing º Multiple CPUs or cores or hyperthreads (HW per-instruction 

interleaving)
- Multiprogramming º Multiple Jobs or Processes
- Multithreading º Multiple threads per Process

• What does it mean to run two threads “concurrently”?
- Scheduler is free to run threads in any order and interleaving: FIFO, Random, …

Multiprocessing vs Multiprogramming

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing
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• Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs

q What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
- Overlap I/O and computation

q Many different file systems do read-ahead
- Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity 
- More important than you might think
- Chop large problem up into simpler pieces

q To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
q Makes system easier to extend

Why Allow Cooperating Threads?
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• If dispatcher can schedule threads in any way, programs must work under all 
circumstances
- Can you test for this?
- How can you know if your program works?

• Independent Threads:
- No state shared with other threads
- Deterministic Þ Input state determines results
- Reproducible Þ Can recreate Starting Conditions, I/O
- Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
- Shared State between multiple threads
- Non-deterministic
- Non-reproducible

• Non-deterministic and Non-reproducible means that bugs can be 
intermittent
- Sometimes called “Heisenbugs”

Correctness for Systems with Concurrency
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• Is any program truly independent?
- Every process shares the file system, OS resources, network, etc.
- Extreme example: buggy device driver causes thread A to crash “independent 

thread” B

• Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs

q Depends on scheduling, which depends on timer/other things
q Original UNIX had a bunch of non-deterministic errors

Interactions Complicate Debugging
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• Most of the time, threads are working on separate data, so scheduling doesn’t 
matter :

  Thread A Thread B
  x = 1; y = 2; 

• However, what about (Initially, x = 12):
  Thread A Thread B
  x = 1; x = 2;

- X could be 1 or 2 (non-deterministic!)
- Could even be 3 for serial processors:

qThread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!

Problem is at the Lowest Level
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• A more complex case (Initially, x = 0):
  Thread A Thread B
  x = x +1; x = x + 2;

• What are the possible outputs?

Problem is at the Lowest Level

load r1, x
add r2, r1, 1
store x, r2

load r1, x
add r2, r1, 2
store x, r2
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• A more complex case (Initially, x = 0):
  Thread A Thread B
  x = x +1; x = x + 2;

Problem is at the Lowest Level

load r1, x
add r2, r1, 1
store x, r2

load r1, x
add r2, r1, 2

store x, r2

Final: x = 3

load r1, x
load r1, x

add r2, r1, 1
add r2, r1, 2

store x, r2
store x, r2

Final: x = 2

load r1, x
add r2, r1, 1

load r1, x
add r2, r1, 2

store x, r2
store x, r2

Final: x = 1
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• Compilers could reorder the instructions to maximize the instruction level
parallelism.
- Yet, it only ensures the dependency correctness within a thread, not across threads.
- pInitialized could be set to true before funcA().

  Thread A Thread B
  p = funcA(); y = 2; 
  pInitialized = true; while(!pInitialized); // wait
  q = funcB(p)

What’s Worse: Reordered Instructions by Compiler
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• To understand a concurrent program, we need to know what the underlying 
indivisible operations are!
• Atomic Operation (原子操作): an operation that always runs to completion 

or not at all
- It is indivisible: it cannot be stopped in the middle and state cannot be modified by 

someone else in the middle
- Fundamental building block – if no atomic operations, then have no way for threads to 

work together
• On most machines, memory references and assignments (i.e. loads and stores) 

of words are atomic
- Consequently – weird example that produces “3” on previous slide can’t happen

• Many instructions are not atomic
- Double-precision floating point store often not atomic
- VAX and IBM 360 had an instruction to copy a whole array

Atomic Operations
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• Great thing about OS’s – analogy between problems in OS and 
problems in real life
- Help you understand real life problems better
- But, computers are much stupider than people

• Example: People need to coordinate:

Motivation: “Too Much Milk”

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime
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• Synchronization (同步): using atomic operations to ensure cooperation 
between threads
- For now, only loads and stores are atomic
- We are going to show that its hard to build anything useful with only reads and 

writes
• Mutual Exclusion (互斥): ensuring that only one thread does a particular 

thing at a time
- One thread excludes the other while doing its task

• Critical Section (临界区): piece of code that only one thread can 
execute at once. 
- Critical section is the result of mutual exclusion
- Critical section and mutual exclusion are two ways of describing the same thing

Definitions
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• Lock: prevents someone from doing something
- Lock before entering critical section and before accessing shared data
- Unlock when leaving, after accessing shared data
- Wait if locked

qImportant idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the refrigerator

- Lock it and take key if you are going to go buy milk
- Fixes too much: roommate angry if only wants orange

- Of Course – We don’t know how to make a lock yet

Definitions

#$@%@#$@
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• Need to be careful about correctness of concurrent programs, since 
non-deterministic
- Impulse is to start coding first, then when it doesn’t work, pull hair out
- Instead, think first, then code
- Always write down behavior first

• What are the correctness properties for the “Too much milk” problem???
- Never more than one person buys
- Someone buys if needed

• Restrict ourselves to use only atomic load and store operations as 
building blocks

Too Much Milk: Correctness Properties
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• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are 
atomic):
   if (noMilk) {
     if (noNote) {
        leave Note;
        buy milk;
        remove note;
     }
  }

Too Much Milk: Solution #1
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• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are 
atomic):  

   Thread A  Thread B
  if (noMilk) { 
   if (noMilk) {
      if (noNote) {

     if (noNote) {
     leave Note;

               buy Milk;
                remove Note;
     }
           }
          leave Note;
                 buy Milk;
                                               remove Note;
        }
   }  

Too Much Milk: Solution #1
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• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are 
atomic):
   if (noMilk) {
     if (noNote) {
        leave Note;
        buy milk;
        remove note;
     }
  }

• Result?  
- Still too much milk but only occasionally!
- Thread can get context switched after checking milk and note but before buying milk!

• Solution makes problem worse since fails intermittently
- Makes it really hard to debug…
- Must work despite what the dispatcher does!

Too Much Milk: Solution #1
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• Clearly the Note is not quite blocking enough
- Let’s try to fix this by placing note first

• Another try at previous solution:

   leave Note;
   if (noMilk) {
     if (noNote) {
        buy milk;
     }
  }

   remove Note;

• What happens here?
- Well, with human, probably nothing bad
- With computer : no one ever buys milk

Too Much Milk: Solution #1½ 
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• How about labeled notes?  
- Now we can leave note before checking

• Algorithm looks like this:
   Thread A  Thread B
  leave note A; leave note B;
 if (noNote B) { if (noNoteA) {
    if (noMilk) {    if (noMilk) {
       buy Milk;       buy Milk;
    }     }
 }  }
 remove note A; remove note B;
• Does this work?
• Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead each to think that the other is 
going to buy

• Really insidious: 
- Extremely unlikely this would happen, but will at worse possible time
- Probably something like this in UNIX

Too Much Milk Solution #2
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• How about labeled notes?  
- Now we can leave note before checking

• Algorithm looks like this:
   Thread A  Thread B
  leave note A; leave note B;
 if (noNote B) { if (noNoteA) {
    if (noMilk) {    if (noMilk) {
       buy Milk;       buy Milk;
    }     }
 }  }
 remove note A; remove note B;
• Does this work?
• Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead each to think that the other is 
going to buy

• Really insidious: 
- Extremely unlikely this would happen, but will at worse possible time
- Probably something like this in UNIX

Too Much Milk Solution #2
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• Here is a possible two-note solution:
   Thread A  Thread B
  leave note A; leave note B;
 while (note B) {\\X if (noNote A) {\\Y
    do nothing;    if (noMilk) {
 }        buy milk;
 if (noMilk) {    }
    buy milk; }
 }  remove note B;
 remove note A;
• Does this work? Yes. Both can guarantee that: 

- It is safe to buy, or
- Other will buy, ok to quit

• At X: 
- If no note B, safe for A to buy, 
- Otherwise wait to find out what will happen

• At Y: 
- If no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

Too Much Milk Solution #3
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• Here is a possible two-note solution:
   Thread A  Thread B
  leave note A; leave note B;
 while (note B) { \\X if (noNote A) { \\Y
    do nothing;    if (noMilk) {
 }        buy milk;
 if (noMilk) {    }
    buy milk; }
 }  remove note B;
 remove note A;
• Does this work? Yes. Both can guarantee that: 

- It is safe to buy, or
- Other will buy, ok to quit

• At X: 
- If no note B, safe for A to buy, 
- Otherwise wait to find out what will happen

• At Y: 
- If no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

Too Much Milk Solution #3



11/8/24 Mengwei Xu @ BUPT 29

Case 1

• “leave note A” happens before “if (noNote A)”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    
    buy milk; }
}  
remove note A;

happened
before

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;
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Case 1

• “leave note A” happens before “if (noNote A)”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    
    buy milk; }
}  
remove note A;

happened
before

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;
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Case 1

• “leave note A” happens before “if (noNote A)”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    
    buy milk; }
}  
remove note A;

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;

Wait for 
note B to 
be remove

happened
before
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Case 2

happened

before

• “if (noNote A)” happens before “leave note A”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    

    buy milk; }
}  
remove note A;

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;
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Case 2

happened

before

• “if (noNote A)” happens before “leave note A”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    

    buy milk; }
}  
remove note A;

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;
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Case 2

happened

before

Wait for 
note B to 
be remove

• “if (noNote A)” happens before “leave note A”

leave note A; 
while (note B) {\\X    

    do nothing;    
};

if (noMilk) {    

    buy milk; }
}  
remove note A;

leave note B; 
if (noNote A) {\\Y
    if (noMilk) {
        buy milk; 
    }
}  
remove note B;
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• Our solution protects a single “Critical-Section” piece of code for each 
thread:

   if (noMilk) { 
       buy milk; 
  }  

• Solution #3 works, but it’s really unsatisfactory
- Really complex – even for this simple example

q Hard to convince yourself that this really works
- A’s code is different from B’s – what if lots of threads?

q Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time

qThis is called “busy-waiting”

• There’s a better way
- Have hardware provide higher-level primitives than atomic load & store
- Build even higher-level programming abstractions on this hardware support

Solution #3 Discussion
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• Suppose we have some sort of implementation of a lock
- lock.Acquire() – wait until lock is free, then grab
- lock.Release() – Unlock, waking up anyone waiting
- These must be atomic operations – if two threads are waiting for the lock and 

both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:
  milklock.Acquire();
  if (nomilk)
     buy milk;
  milklock.Release();

• Once again, section of code between Acquire() and Release() 
called a “Critical Section”

Too Much Milk: Solution #4
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Where are we going with synchronization?

Hardware

Higher-
level 
API

Programs

• We are going to implement various higher-level 
synchronization primitives using atomic operations
• Everything is pretty painful if only atomic primitives are load 

and store
• Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs
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• Suppose we have some sort of implementation of a lock
- lock.Acquire() – wait until lock is free, then grab
- lock.Release() – Unlock, waking up anyone waiting
- These must be atomic operations – if two threads are waiting for the lock and 

both see it’s free, only one succeeds to grab the lock
• 3 formal properties

- Mutual exclusion: at most one thread holds the lock
- Progress: if no thread holds the lock and any thread attempts to acquire the lock,

then eventually some thread succeeds in acquiring the lock
- Bounded waiting: if threadT attempts to acquire a lock, then there exists a

bound on the number of times other threads can successfully acquire the lock
beforeT does
qYet, it does not promise that waiting threads acquire the lock in FIFO order.

Lock
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• A simple case of lock.
- Assuming x is shared among threads
- Other threads only access x with lock

 

What does a Lock Guarantee?

int x = 0;
// T1: can we ensure x = 0 here?

lock.acquire();
// T2: can we ensure x = 0 here?

x = 1;
// T3: can we ensure x = 1 here?

lock.release();
// T4: can we ensure x = 1 here?

x = 2;
// T5: can we ensure x = 2 here?
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• A simple case of lock.
- Assuming x is shared among threads
- Other threads only access x with lock

 

What does a Lock Guarantee?

If a lock is not held, nothing
can be guaranteed!

int x = 0;
// T1: can we ensure x = 0 here?

lock.acquire();
// T2: can we ensure x = 0 here?

x = 1;
// T3: can we ensure x = 1 here?

lock.release();
// T4: can we ensure x = 1 here?

x = 2;
// T5: can we ensure x = 2 here?
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• ConditionVariable (条件变量): a queue of threads waiting for 
something inside a critical section
- Key idea: allow sleeping inside critical section by atomically releasing lock at time 

we go to sleep
• Operations:

- Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later, 
before returning. 

- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters
- Differentiate them from UNIX wait and signal

Condition Variable
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• ConditionVariable (条件变量): a queue of threads waiting for 
something inside a critical section
- Key idea: allow sleeping inside critical section by atomically releasing lock at time 

we go to sleep
• A common pattern:

Condition Variable Example

FuncA_wait() {
lock.acquire();
// read/write shared state here
while (!testOnSharedState())

cv.wait(&lock);
assert(testOnSharedState());
lock.release();

}

FuncB_signal() {
lock.acquire();
// read/write shared state here
// If state has changed that allows

another thread to make progress, call
signal or broadcast

cv.signal();
lock.release();

}
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• A concrete example of bounded queue implementation (or producer-
consumer,生产者消费者)

Condition Variable Example

class bounded_queue {
Lock lock;
CV itemAdded;
CV itemRemoved;
void insert(int item);
int remove();

}

void bounded_queue::insert(int item) {
lock.acquire();
while (queue.full()) {

itemRemoved.wait(&lock);
}
add_item(item);
itemAdded.signal();
lock.release();

}

How to implement remove()?
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• A concrete example of bounded queue implementation (or producer-
consumer,生产者消费者)

• Two key principles
- CV is always used with lock acquired
- CV is put in a while loop.Why?

Condition Variable Example

void bounded_queue::insert(int item) {
lock.acquire();
while (queue.full()) {

itemRemoved.wait(&lock);
}
add_item(item);
itemAdded.signal();
lock.release();

}
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• Semaphores (信号量) are a kind of generalized lock
- First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and supports 
the following two operations:
- P(): an atomic operation that waits for semaphore to become positive, then 

decrements it by 1 
qThink of this as the wait() operation

- V(): an atomic operation that increments the semaphore by 1, waking up a 
waiting P, if any
qThis of this as the signal() operation

- Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to 
increment) in Dutch

Semaphores
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• Semaphores are like integers, except
- No negative values
- Only operations allowed are P and V – can’t read or write value, except to set it 

initially
- Operations must be atomic

qTwo P’s together can’t decrement value below zero
q Similarly, thread going to sleep in P won’t miss wakeup from V – even if they both happen 

at same time

• Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

Semaphores vs. Integers
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1. Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore”.
• Can be used for mutual exclusion:

  semaphore.P();
 // Critical section goes here
 semaphore.V();

2. Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 schedules 

thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which must wait for 

thread to terminate:
  Initial value of semaphore = 0
  ThreadJoin {
    semaphore.P();
 }

  ThreadFinish {
    semaphore.V();
 }

Two Uses of Semaphores
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• Problem Definition
- Producer puts things into a shared buffer
- Consumer takes them out
- Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so put a 
fixed-size buffer between them
- Need to synchronize access to this buffer
- Producer needs to wait if buffer is full
- Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
- cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
- Producer can put limited number of Cokes in machine
- Consumer can’t take Cokes out if machine is empty

Producer-Consumer with a Bounded Buffer

Producer ConsumerBuffer
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• Correctness Constraints:
- Consumer must wait for producer to fill buffers, if none full (scheduling 

constraint)
- Producer must wait for consumer to empty buffers, if all full (scheduling 

constraint)
- Only one thread can manipulate buffer queue at a time (mutual exclusion)

• Remember why we need mutual exclusion
- Because computers are stupid
- Imagine if in real life: the delivery person is filling the machine and somebody 

comes up and tries to stick their money into the machine
• General rule of thumb: 

Use a separate semaphore for each constraint
- Semaphore fullSlots; // consumer’s constraint
- Semaphore emptySlots;// producer’s constraint
- Semaphore mutex;       // mutual exclusion

Correctness constraints for solution
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Semaphore fullSlots = ?; // Initially, no coke
 Semaphore emptySlots = ?;
    // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
    // more coke
}

 Consumer() {
 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;
}

Full Solution to Bounded Buffer
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Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;
    // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
    // more coke
}

 Consumer() {
 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;
}

Full Solution to Bounded Buffer
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Discussion about Solution

Why asymmetry?
• Producer does: emptySlots.P(), 
fullSlots.V()

• Consumer does: fullSlots.P(), 
emptySlots.V()

Decrease # of 
empty slots

Increase # of 
occupied slots

Increase # of 
empty slots

Decrease # of 
occupied slots
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Discussion about Solution

Is order of P’s important?
• Yes!  Can cause deadlock

Is order of V’s important?
• No, except that it might affect 

scheduling efficiency
What if we have 2 producers or 2 
consumers?
• Do we need to change anything?

Producer(item) {
 mutex.P(); 
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {
 fullSlots.P();
 mutex.P();
 item = Dequeue();
 mutex.V();
 emptySlots.V();
 return item;
}
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Is order of P’s important?
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Is order of V’s important?
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scheduling efficiency
What if we have 2 producers or 2 
consumers?
• Do we need to change anything?

Producer(item) {
 mutex.P(); 
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {
 fullSlots.P();
 mutex.P();
 item = Dequeue();
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}
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• Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes it easier to read and debug

Some Advices
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• Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes it easier to read and debug

• A case: double-checked locking

Some Advices

Singleton* Singleton::instance() {
if (pInstance == NULL) {

lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();

}
return pInstance;

}

Singleton* Singleton::instance() {
if (pInstance == NULL) {

pInstance = new Instance();
}
return pInstance;

}

An unsafe solution An ``optimized’’ solution.
Is it safe?

Singleton* Singleton::instance() {
lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();
return pInstance;

}

A safe solution
https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
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Common Concurrency Problems

[1] “Learning from mistakes: a comprehensive study on real world concurrency bug 
characteristics”, Shan Lu, et al.ASPLOS’08
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• Atomicity-Violation Bugs

Common Concurrency Problems
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• Atomicity-Violation Bugs

Common Concurrency Problems
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• Order-Violation Bugs

Common Concurrency Problems
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• Order-Violation Bugs

Common Concurrency Problems


