
Operating Systems
Lecture 10

lock and conditional variable design

Prof. Mengwei Xu

Much of the contents are from Prof. Ion Stoica (cs162@Berkeley)

11/8/24 Mengwei Xu @ BUPT 2

• Round-Robin Scheduling:
- Give each thread a small amount of CPU time when it executes; cycle between all

ready threads
- Pros: Better for short jobs

• Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):
- Run whatever job has the least amount of computation to do/least remaining amount

of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

Recap: Scheduling

11/8/24 Mengwei Xu @ BUPT 3

• Lottery Scheduling:
- Give each thread a priority-dependent number of tokens (short tasks Þ more

tokens)

• Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms
- Automatic promotion/demotion of process priority in order to approximate

SJF/SRTF

• Real-time scheduling
- Need to meet a deadline, predictability essential
- Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

Recap: Scheduling

11/8/24 Mengwei Xu @ BUPT 4

Numbering from zero

11/8/24 Mengwei Xu @ BUPT 5

OS Conceptual Framework

Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Physical addresses shared
• So: Processes and Address

Translation

• CPU must be Shared
• So: Threads

• Processes aren’t trusted
• So: Kernel/Userspace Split

• Threads might not cooperate
• So: Use timer interrupts to

context switch (”preemption”)

CPU
state

CPU
state

CPU
state

CPU
state

11/8/24 Mengwei Xu @ BUPT 6

• Motivating synchronization: why it’s difficult
• Locks
• Condition variables
• Semaphores

Goals for Today

11/8/24 Mengwei Xu @ BUPT 7

Recall: Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed
• Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running
Threads

Ready
Threads

1 2 3 4 5 1 2 3 4 5

11/8/24 Mengwei Xu @ BUPT 8

• Remember Definitions:
- Multiprocessing º Multiple CPUs or cores or hyperthreads (HW per-instruction

interleaving)
- Multiprogramming º Multiple Jobs or Processes
- Multithreading º Multiple threads per Process

• What does it mean to run two threads “concurrently”?
- Scheduler is free to run threads in any order and interleaving: FIFO, Random, …

Multiprocessing vs Multiprogramming

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

11/8/24 Mengwei Xu @ BUPT 9

• Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs

q What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
- Overlap I/O and computation

q Many different file systems do read-ahead
- Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces

q To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
q Makes system easier to extend

Why Allow Cooperating Threads?

11/8/24 Mengwei Xu @ BUPT 10

• If dispatcher can schedule threads in any way, programs must work under all
circumstances
- Can you test for this?
- How can you know if your program works?

• Independent Threads:
- No state shared with other threads
- Deterministic Þ Input state determines results
- Reproducible Þ Can recreate Starting Conditions, I/O
- Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
- Shared State between multiple threads
- Non-deterministic
- Non-reproducible

• Non-deterministic and Non-reproducible means that bugs can be
intermittent
- Sometimes called “Heisenbugs”

Correctness for Systems with Concurrency

11/8/24 Mengwei Xu @ BUPT 11

• Is any program truly independent?
- Every process shares the file system, OS resources, network, etc.
- Extreme example: buggy device driver causes thread A to crash “independent

thread” B

• Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs

q Depends on scheduling, which depends on timer/other things
q Original UNIX had a bunch of non-deterministic errors

Interactions Complicate Debugging

11/8/24 Mengwei Xu @ BUPT 12

• Most of the time, threads are working on separate data, so scheduling doesn’t
matter :

 Thread A Thread B
 x = 1; y = 2;

• However, what about (Initially, x = 12):
 Thread A Thread B
 x = 1; x = 2;

- X could be 1 or 2 (non-deterministic!)
- Could even be 3 for serial processors:

qThread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!

Problem is at the Lowest Level

11/8/24 Mengwei Xu @ BUPT 13

• A more complex case (Initially, x = 0):
 Thread A Thread B
 x = x +1; x = x + 2;

• What are the possible outputs?

Problem is at the Lowest Level

load r1, x
add r2, r1, 1
store x, r2

load r1, x
add r2, r1, 2
store x, r2

11/8/24 Mengwei Xu @ BUPT 14

• A more complex case (Initially, x = 0):
 Thread A Thread B
 x = x +1; x = x + 2;

Problem is at the Lowest Level

load r1, x
add r2, r1, 1
store x, r2

load r1, x
add r2, r1, 2

store x, r2

Final: x = 3

load r1, x
load r1, x

add r2, r1, 1
add r2, r1, 2

store x, r2
store x, r2

Final: x = 2

load r1, x
add r2, r1, 1

load r1, x
add r2, r1, 2

store x, r2
store x, r2

Final: x = 1

11/8/24 Mengwei Xu @ BUPT 15

• Compilers could reorder the instructions to maximize the instruction level
parallelism.
- Yet, it only ensures the dependency correctness within a thread, not across threads.
- pInitialized could be set to true before funcA().

 Thread A Thread B
 p = funcA(); y = 2;
 pInitialized = true; while(!pInitialized); // wait
 q = funcB(p)

What’s Worse: Reordered Instructions by Compiler

11/8/24 Mengwei Xu @ BUPT 16

• To understand a concurrent program, we need to know what the underlying
indivisible operations are!
• Atomic Operation (原子操作): an operation that always runs to completion

or not at all
- It is indivisible: it cannot be stopped in the middle and state cannot be modified by

someone else in the middle
- Fundamental building block – if no atomic operations, then have no way for threads to

work together
• On most machines, memory references and assignments (i.e. loads and stores)

of words are atomic
- Consequently – weird example that produces “3” on previous slide can’t happen

• Many instructions are not atomic
- Double-precision floating point store often not atomic
- VAX and IBM 360 had an instruction to copy a whole array

Atomic Operations

11/8/24 Mengwei Xu @ BUPT 17

• Great thing about OS’s – analogy between problems in OS and
problems in real life
- Help you understand real life problems better
- But, computers are much stupider than people

• Example: People need to coordinate:

Motivation: “Too Much Milk”

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

11/8/24 Mengwei Xu @ BUPT 18

• Synchronization (同步): using atomic operations to ensure cooperation
between threads
- For now, only loads and stores are atomic
- We are going to show that its hard to build anything useful with only reads and

writes
• Mutual Exclusion (互斥): ensuring that only one thread does a particular

thing at a time
- One thread excludes the other while doing its task

• Critical Section (临界区): piece of code that only one thread can
execute at once.
- Critical section is the result of mutual exclusion
- Critical section and mutual exclusion are two ways of describing the same thing

Definitions

11/8/24 Mengwei Xu @ BUPT 19

• Lock: prevents someone from doing something
- Lock before entering critical section and before accessing shared data
- Unlock when leaving, after accessing shared data
- Wait if locked

qImportant idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the refrigerator

- Lock it and take key if you are going to go buy milk
- Fixes too much: roommate angry if only wants orange

- Of Course – We don’t know how to make a lock yet

Definitions

#$@%@#$@

11/8/24 Mengwei Xu @ BUPT 20

• Need to be careful about correctness of concurrent programs, since
non-deterministic
- Impulse is to start coding first, then when it doesn’t work, pull hair out
- Instead, think first, then code
- Always write down behavior first

• What are the correctness properties for the “Too much milk” problem???
- Never more than one person buys
- Someone buys if needed

• Restrict ourselves to use only atomic load and store operations as
building blocks

Too Much Milk: Correctness Properties

11/8/24 Mengwei Xu @ BUPT 21

• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

Too Much Milk: Solution #1

11/8/24 Mengwei Xu @ BUPT 22

• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

 Thread A Thread B
 if (noMilk) {
 if (noMilk) {
 if (noNote) {

 if (noNote) {
 leave Note;

 buy Milk;
 remove Note;
 }
 }
 leave Note;
 buy Milk;
 remove Note;
 }
 }

Too Much Milk: Solution #1

11/8/24 Mengwei Xu @ BUPT 23

• Use a note to avoid buying too much milk:
- Leave a note before buying (kind of “lock”)
- Remove note after buying (kind of “unlock”)
- Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

• Result?
- Still too much milk but only occasionally!
- Thread can get context switched after checking milk and note but before buying milk!

• Solution makes problem worse since fails intermittently
- Makes it really hard to debug…
- Must work despite what the dispatcher does!

Too Much Milk: Solution #1

11/8/24 Mengwei Xu @ BUPT 24

• Clearly the Note is not quite blocking enough
- Let’s try to fix this by placing note first

• Another try at previous solution:

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

• What happens here?
- Well, with human, probably nothing bad
- With computer : no one ever buys milk

Too Much Milk: Solution #1½

11/8/24 Mengwei Xu @ BUPT 25

• How about labeled notes?
- Now we can leave note before checking

• Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;
 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;
• Does this work?
• Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead each to think that the other is
going to buy

• Really insidious:
- Extremely unlikely this would happen, but will at worse possible time
- Probably something like this in UNIX

Too Much Milk Solution #2

11/8/24 Mengwei Xu @ BUPT 26

• How about labeled notes?
- Now we can leave note before checking

• Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;
 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;
• Does this work?
• Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead each to think that the other is
going to buy

• Really insidious:
- Extremely unlikely this would happen, but will at worse possible time
- Probably something like this in UNIX

Too Much Milk Solution #2

11/8/24 Mengwei Xu @ BUPT 27

• Here is a possible two-note solution:
 Thread A Thread B
 leave note A; leave note B;
 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;
• Does this work? Yes. Both can guarantee that:

- It is safe to buy, or
- Other will buy, ok to quit

• At X:
- If no note B, safe for A to buy,
- Otherwise wait to find out what will happen

• At Y:
- If no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

Too Much Milk Solution #3

11/8/24 Mengwei Xu @ BUPT 28

• Here is a possible two-note solution:
 Thread A Thread B
 leave note A; leave note B;
 while (note B) { \\X if (noNote A) { \\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;
• Does this work? Yes. Both can guarantee that:

- It is safe to buy, or
- Other will buy, ok to quit

• At X:
- If no note B, safe for A to buy,
- Otherwise wait to find out what will happen

• At Y:
- If no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

Too Much Milk Solution #3

11/8/24 Mengwei Xu @ BUPT 29

Case 1

• “leave note A” happens before “if (noNote A)”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

happened
before

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

11/8/24 Mengwei Xu @ BUPT 30

Case 1

• “leave note A” happens before “if (noNote A)”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

happened
before

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

11/8/24 Mengwei Xu @ BUPT 31

Case 1

• “leave note A” happens before “if (noNote A)”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

Wait for
note B to
be remove

happened
before

11/8/24 Mengwei Xu @ BUPT 32

Case 2

happened

before

• “if (noNote A)” happens before “leave note A”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

11/8/24 Mengwei Xu @ BUPT 33

Case 2

happened

before

• “if (noNote A)” happens before “leave note A”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

11/8/24 Mengwei Xu @ BUPT 34

Case 2

happened

before

Wait for
note B to
be remove

• “if (noNote A)” happens before “leave note A”

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

11/8/24 Mengwei Xu @ BUPT 35

• Our solution protects a single “Critical-Section” piece of code for each
thread:

 if (noMilk) {
 buy milk;
 }

• Solution #3 works, but it’s really unsatisfactory
- Really complex – even for this simple example

q Hard to convince yourself that this really works
- A’s code is different from B’s – what if lots of threads?

q Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time

qThis is called “busy-waiting”

• There’s a better way
- Have hardware provide higher-level primitives than atomic load & store
- Build even higher-level programming abstractions on this hardware support

Solution #3 Discussion

11/8/24 Mengwei Xu @ BUPT 36

• Suppose we have some sort of implementation of a lock
- lock.Acquire() – wait until lock is free, then grab
- lock.Release() – Unlock, waking up anyone waiting
- These must be atomic operations – if two threads are waiting for the lock and

both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:
 milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

• Once again, section of code between Acquire() and Release()
called a “Critical Section”

Too Much Milk: Solution #4

11/8/24 Mengwei Xu @ BUPT 37

Where are we going with synchronization?

Hardware

Higher-
level
API

Programs

• We are going to implement various higher-level
synchronization primitives using atomic operations
• Everything is pretty painful if only atomic primitives are load

and store
• Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

11/8/24 Mengwei Xu @ BUPT 38

• Suppose we have some sort of implementation of a lock
- lock.Acquire() – wait until lock is free, then grab
- lock.Release() – Unlock, waking up anyone waiting
- These must be atomic operations – if two threads are waiting for the lock and

both see it’s free, only one succeeds to grab the lock
• 3 formal properties

- Mutual exclusion: at most one thread holds the lock
- Progress: if no thread holds the lock and any thread attempts to acquire the lock,

then eventually some thread succeeds in acquiring the lock
- Bounded waiting: if threadT attempts to acquire a lock, then there exists a

bound on the number of times other threads can successfully acquire the lock
beforeT does
qYet, it does not promise that waiting threads acquire the lock in FIFO order.

Lock

11/8/24 Mengwei Xu @ BUPT 39

• A simple case of lock.
- Assuming x is shared among threads
- Other threads only access x with lock

What does a Lock Guarantee?

int x = 0;
// T1: can we ensure x = 0 here?

lock.acquire();
// T2: can we ensure x = 0 here?

x = 1;
// T3: can we ensure x = 1 here?

lock.release();
// T4: can we ensure x = 1 here?

x = 2;
// T5: can we ensure x = 2 here?

11/8/24 Mengwei Xu @ BUPT 40

• A simple case of lock.
- Assuming x is shared among threads
- Other threads only access x with lock

What does a Lock Guarantee?

If a lock is not held, nothing
can be guaranteed!

int x = 0;
// T1: can we ensure x = 0 here?

lock.acquire();
// T2: can we ensure x = 0 here?

x = 1;
// T3: can we ensure x = 1 here?

lock.release();
// T4: can we ensure x = 1 here?

x = 2;
// T5: can we ensure x = 2 here?

11/8/24 Mengwei Xu @ BUPT 41

• ConditionVariable (条件变量): a queue of threads waiting for
something inside a critical section
- Key idea: allow sleeping inside critical section by atomically releasing lock at time

we go to sleep
• Operations:

- Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later,
before returning.

- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters
- Differentiate them from UNIX wait and signal

Condition Variable

11/8/24 Mengwei Xu @ BUPT 42

• ConditionVariable (条件变量): a queue of threads waiting for
something inside a critical section
- Key idea: allow sleeping inside critical section by atomically releasing lock at time

we go to sleep
• A common pattern:

Condition Variable Example

FuncA_wait() {
lock.acquire();
// read/write shared state here
while (!testOnSharedState())

cv.wait(&lock);
assert(testOnSharedState());
lock.release();

}

FuncB_signal() {
lock.acquire();
// read/write shared state here
// If state has changed that allows

another thread to make progress, call
signal or broadcast

cv.signal();
lock.release();

}

11/8/24 Mengwei Xu @ BUPT 43

• A concrete example of bounded queue implementation (or producer-
consumer,生产者消费者)

Condition Variable Example

class bounded_queue {
Lock lock;
CV itemAdded;
CV itemRemoved;
void insert(int item);
int remove();

}

void bounded_queue::insert(int item) {
lock.acquire();
while (queue.full()) {

itemRemoved.wait(&lock);
}
add_item(item);
itemAdded.signal();
lock.release();

}

How to implement remove()?

11/8/24 Mengwei Xu @ BUPT 44

• A concrete example of bounded queue implementation (or producer-
consumer,生产者消费者)

• Two key principles
- CV is always used with lock acquired
- CV is put in a while loop.Why?

Condition Variable Example

void bounded_queue::insert(int item) {
lock.acquire();
while (queue.full()) {

itemRemoved.wait(&lock);
}
add_item(item);
itemAdded.signal();
lock.release();

}

11/8/24 Mengwei Xu @ BUPT 45

• Semaphores (信号量) are a kind of generalized lock
- First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and supports
the following two operations:
- P(): an atomic operation that waits for semaphore to become positive, then

decrements it by 1
qThink of this as the wait() operation

- V(): an atomic operation that increments the semaphore by 1, waking up a
waiting P, if any
qThis of this as the signal() operation

- Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to
increment) in Dutch

Semaphores

11/8/24 Mengwei Xu @ BUPT 46

• Semaphores are like integers, except
- No negative values
- Only operations allowed are P and V – can’t read or write value, except to set it

initially
- Operations must be atomic

qTwo P’s together can’t decrement value below zero
q Similarly, thread going to sleep in P won’t miss wakeup from V – even if they both happen

at same time

• Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

Semaphores vs. Integers

11/8/24 Mengwei Xu @ BUPT 47

1. Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore”.
• Can be used for mutual exclusion:

 semaphore.P();
 // Critical section goes here
 semaphore.V();

2. Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 schedules

thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which must wait for

thread to terminate:
 Initial value of semaphore = 0
 ThreadJoin {
 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

Two Uses of Semaphores

11/8/24 Mengwei Xu @ BUPT 48

• Problem Definition
- Producer puts things into a shared buffer
- Consumer takes them out
- Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so put a
fixed-size buffer between them
- Need to synchronize access to this buffer
- Producer needs to wait if buffer is full
- Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
- cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
- Producer can put limited number of Cokes in machine
- Consumer can’t take Cokes out if machine is empty

Producer-Consumer with a Bounded Buffer

Producer ConsumerBuffer

11/8/24 Mengwei Xu @ BUPT 49

• Correctness Constraints:
- Consumer must wait for producer to fill buffers, if none full (scheduling

constraint)
- Producer must wait for consumer to empty buffers, if all full (scheduling

constraint)
- Only one thread can manipulate buffer queue at a time (mutual exclusion)

• Remember why we need mutual exclusion
- Because computers are stupid
- Imagine if in real life: the delivery person is filling the machine and somebody

comes up and tries to stick their money into the machine
• General rule of thumb:

Use a separate semaphore for each constraint
- Semaphore fullSlots; // consumer’s constraint
- Semaphore emptySlots;// producer’s constraint
- Semaphore mutex; // mutual exclusion

Correctness constraints for solution

11/8/24 Mengwei Xu @ BUPT 50

Semaphore fullSlots = ?; // Initially, no coke
 Semaphore emptySlots = ?;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
 // more coke
}

 Consumer() {
 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;
}

Full Solution to Bounded Buffer

11/8/24 Mengwei Xu @ BUPT 51

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
 // more coke
}

 Consumer() {
 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;
}

Full Solution to Bounded Buffer

11/8/24 Mengwei Xu @ BUPT 52

Discussion about Solution

Why asymmetry?
• Producer does: emptySlots.P(),
fullSlots.V()

• Consumer does: fullSlots.P(),
emptySlots.V()

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

11/8/24 Mengwei Xu @ BUPT 53

Discussion about Solution

Is order of P’s important?
• Yes! Can cause deadlock

Is order of V’s important?
• No, except that it might affect

scheduling efficiency
What if we have 2 producers or 2
consumers?
• Do we need to change anything?

Producer(item) {
 mutex.P();
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {
 fullSlots.P();
 mutex.P();
 item = Dequeue();
 mutex.V();
 emptySlots.V();
 return item;
}

11/8/24 Mengwei Xu @ BUPT 54

Discussion about Solution

Is order of P’s important?
• Yes! Can cause deadlock

Is order of V’s important?
• No, except that it might affect

scheduling efficiency
What if we have 2 producers or 2
consumers?
• Do we need to change anything?

Producer(item) {
 mutex.P();
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {
 fullSlots.P();
 mutex.P();
 item = Dequeue();
 mutex.V();
 emptySlots.V();
 return item;
}

11/8/24 Mengwei Xu @ BUPT 55

• Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes it easier to read and debug

Some Advices

11/8/24 Mengwei Xu @ BUPT 56

• Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes it easier to read and debug

• A case: double-checked locking

Some Advices

Singleton* Singleton::instance() {
if (pInstance == NULL) {

lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();

}
return pInstance;

}

Singleton* Singleton::instance() {
if (pInstance == NULL) {

pInstance = new Instance();
}
return pInstance;

}

An unsafe solution An ``optimized’’ solution.
Is it safe?

Singleton* Singleton::instance() {
lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();
return pInstance;

}

A safe solution
https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

11/8/24 Mengwei Xu @ BUPT 57

Common Concurrency Problems

[1] “Learning from mistakes: a comprehensive study on real world concurrency bug
characteristics”, Shan Lu, et al.ASPLOS’08

11/8/24 Mengwei Xu @ BUPT 58

• Atomicity-Violation Bugs

Common Concurrency Problems

11/8/24 Mengwei Xu @ BUPT 59

• Atomicity-Violation Bugs

Common Concurrency Problems

11/8/24 Mengwei Xu @ BUPT 60

• Order-Violation Bugs

Common Concurrency Problems

11/8/24 Mengwei Xu @ BUPT 61

• Order-Violation Bugs

Common Concurrency Problems

